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Objectives 

 What are the spatial, diurnal and seasonal differences in coarse 
PM mass and chemical composition in rural and in urban areas of 
the Los Angeles Basin? 

 What is the fraction of chemically speciated PM that penetrates 
indoors? 

 How do the chemical characteristics of coarse PM collected in 
each of the above environments determine their toxicity? 

 What are the trends of coarse PM mass and composition over the 
past 15+ yrs of monitoring in the LA Basin?  

 What would be the most effective ways of regulating coarse PM? 



Sources 

Topography Meteorology 



USC Coarse PM Study 

Comprehensive 
Investigation 

12 months 

24-hour samples 

10 sampling sites 

Intensive Investigation 

Summer and winter 

Diurnal samples 

3 sampling sites 



Physical Characterization 
•What causes the spatial and seasonal trends in CPM mass? 
•Has the mass concentration changed over the years? 
• Is PM10 a good surrogate of CPM? 

 

Chemical Characterization 

• Is the chemical composition of CPM different from PM2.5? 
•What are the sources and formation mechanisms of CPM? 
•Has the chemical profile of coarse particle changed over the years? 

Toxicological Characterization 

•What are driving the toxicity of coarse particles? 
• Is there a link between source, composition and toxicity of CPM? 

 
 
 
 
 
 
 
 



Mass Concentration - Overview 
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Pakbin et al  AS&T 2010 
 
• Higher correlation 

between Coarse and 
PM2.5 in winter than 
summer 
 

• 24 hr average Data at 
USC 



Pakbin et al  AS&T 2010 
 
• Higher correlation 

between Coarse and 
PM2.5 in winter than 
summer 
 

• 24 hr average Data at 
Riverside 



Historical Trend 

 PM10 and PM2.5 data from CARB 
 PM10-2.5 concentrations from the subtraction method 
 Year 1999 to 2009, 24-hr concentration 

 



Historical Trends 
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Los Angeles

Downtown LA Linear Regression R2 p 
PM10 Average y = -1.33(±0.12) x + 57.4(±1.6) 0.86 <0.001 

PM10-2.5 
Average y = -0.39(±0.23) x + 18.9(±1.5) 0.25 0.11 

PM2.5 Average y = -0.92(±0.09) x + 24.6(±0.64)  0.91 <0.001 



Riverside Linear regression R2 p 
PM10 Average y = -1.76(±0.23) x + 84.6(±3.0) 0.75 <0.001 

PM10-2.5 
Average y = -0.57(±0.29) x + 35.7(±2.0) 0.30 0.08 

PM2.5 Average y = -1.69(±0.12) x + 33.5(±0.84) 0.96 <0.001 

Historical Trends in Other LAB Areas 

Long Beach Linear regression R2 p 
PM10 Average y = -0.76(±0.11) x + 44.8(±1.4) 0.72 <0.001 

PM10-2.5 
Average y = -0.22(±0.11) x + 17.0(±0.74)  0.31 0.07 

PM2.5 Average y = -0.87(±0.09) x + 22.4(±0.61) 0.91 <0.001 
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PM10 as a Surrogate of CPM 

CPM = 0.35*PM10 + 4.23 CPM = 0.41*PM10 + 2.21
R = 0.66, N = 328
15% of data above the red line

R = 0.63, N = 246
28% of data above the red line
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PM10 as a Surrogate of CPM 

CPM = 0.57*PM10 - 1.31
R = 0.78, N = 580
43% of data above the red line

CPM = 0.69*PM10 - 2.54
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62% of  data above the red line
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Summary 

 Seasonal and spatial trend 

 PM10 is a generally good surrogate for CPM 

 The significant decrease in PM10 is driven 
mostly by fine PM 



Physical Characterization 
•What causes the spatial and seasonal trends in CPM mass? 
•Has the mass concentration changed over the years? 
• Is PM10 a good surrogate of CPM? 

 

Chemical Characterization 

• Is the chemical composition of CPM different from PM2.5? 
•What are the sources and formation mechanisms of CPM? 
•Has the chemical profile of coarse particle changed over the years? 

Toxicological Characterization 

•What are driving the toxicity of coarse particles? 
• Is there a link between source, composition and toxicity of CPM? 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



Chemical Composition - Overview 
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Seasonal and Spatial Trend 
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Temporal variation of abrasive vehicular tracers (Cu, Sb, Ba) in different sampling site clusters: (a) 
Los Angeles cluster, (b) Long Beach, (c) Riverside cluster, and (d) Lancaster.  

Pakbin et al, AS&T 2011 



Temporal variation of selected mineral dust tracers (Fe, Al, K, Ti) in different sampling site clusters: 
(a) Los Angeles cluster, (b) Long Beach, (c) Riverside cluster, and (d) Lancaster.  

Pakbin et al, AS&T 2011 



Organics 

 Hopanes, steranes and PAHs, mostly in trace levels / undetected 
 Alkanes and alkanoic acids are the two most dominant components 
 Levoglucosan is still significant in CPM, with higher levels in winter 



Organics – n-alkanes 

 Similar to the source 
profiles of: 
 Garden soil 

 Leaf debris        C29/C31 

 Road dust 

 Tire wear         C37/C38 

 Al and Ti – crustal 
materials 

 EC-tailpipe exhaust  

 Cu, Zn and Ba- vehicular 
abrasive emissions 
 

  OC EC Al Ti Cu Zn Ba 
∑n-Alkanes 0.73 0.63 0.59 0.72 0.14 0.40 0.48 
C29 0.78 0.33 0.83 0.89 0.01 0.25 0.27 
C37 0.56 0.65 -0.06 0.13 0.18 0.38 0.68 

Cheung et al, Atmos Environ 2011 

 



Organics – n-alkanoic acids 

  OC EC Al Ti Cu Zn Ba 

∑n-Alkan.Acids 0.74 0.11 0.68 0.71 -0.11 0.19 0.32 

C18 0.62 -0.14 0.70 0.64 -0.32 -0.15 -0.05 

C30 0.59 -0.12 0.69 0.62 -0.44 -0.13 -0.14 

 Similar to the source 
profiles of: 
 Road dust 

 Green leaf debris 

 Tire wear 

 Al and Ti – crustal 
materials  

 EC-tailpipe exhaust 

 Cu, Zn and Ba- vehicular 
abrasive emissions 
 
Cheung et al, Atmos Environ 2011 



Diurnal Trends 

 In summer, higher levels in midday / afternoon 
 In winter, overnight peaks, near-freeway re-suspension 
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Cheung et al, Roy Soc Chem, JEM- 2012 



Diurnal Trends 

 Sea salt and nitrate follows similar diurnal trend 
 Nitrate formation 

 In summer, sea salt depletion 
 In winter, depletion in addition to reactions with mineral dust and ammonium 
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Cheung et al, Roy Soc Chem, JEM- 2012 
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Historical Trends in CPM in the LA Basin 

 Historical chemical 
composition 

 Peer-reviewed 
journals 

 Government agency 
database 
 

 3 year-long studies  
 1986-87, CARB 
 1995-96, AQMD 
 2008-09, EPA/USC 

 
 

 
Cheung et al, JAWMA 2012 



Historical Trend 

Riverside 
Cheung et al, JAWMA 2012 



Long Beach 

Cheung et al, JAWMA 2012 



Summary 

 Mineral dust is the most dominant group, with higher fractions 
in inland areas 

 Organic matter mostly arises from soil and biological materials 

 Combustion emissions have decreased considerably even in 
CPM in the last decade 

 Significant diurnal trend and contrasting primary re-suspension 
mechanism in summer and winter 



Physical Characterization 
•What causes the spatial and seasonal trends in CPM mass? 
•Has the mass concentration changed over the years? 
• Is PM10 a good surrogate of CPM? 

 

Chemical Characterization 

• Is the chemical composition of CPM different from PM2.5? 
•What are the sources and formation mechanisms of CPM? 
•Has the chemical profile of coarse particle changed over the years? 

Toxicological Characterization 

•What are driving the toxicity of coarse particles? 
• Is there a link between source, composition and toxicity of CPM? 

 
 
 
 
 
 
 
 



Cellular ROS Assay 

 A Cell-based Method  
 Alveolar macrophage (AM) 
 Measures total ROS activity 

 
 Method 

1) Water extraction  
2) Filtration  
3) Add DCFH-DA solution of AM cell culture 
4) Exposure of AM cells to PM extracts 
5) Measure the increase of fluorescence in treated samples every 

30 mins for an incubation time of 150 mins, and compared 
with untreated controls  

DCFH-DA         DCFH         DCH 
(2’7’-dichlorodihydrofluorescin diacetate)                    (2’7’-dichlorodihydrofluorescin)             (2’7’-dichlorofluorescein) 

 

ROS 



PM Induced-ROS Formation 
 Particle-cell interaction 

1. Fine/Coarse PM enter cells by phagocytosis. 

2. Ultrafine PM, organic compounds enter by diffusion. 

3. Water-soluble ions enter by ion channels, carrier 
molecules. 

 
 

 Sea salt Vehicle abrasion 

Crustal material 

Water Soluble Fraction of CPM Elements 

Cheung et al ES&T 2012 
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ROS Activity in Coarse Particles 

  WS-V WS-Pd WS-Cu WS-Rh WS-Ti WS-Al 
ROS 0.74 0.78 0.73 0.64 0.14 0.16 
WS-V 0.86 0.67 0.64 0.15 0.27 
WS-Pd 0.85 0.86 0.11 0.34 
WS-Cu 0.71 0.12 0.28 
WS-Rh 0.07 0.53 
WS-Ti 0.06   

Ship and brake wear Brake wear Catalytic converter wear 

Cheung et al ES&T 2012 



Summary 

 Water solubility in crustal vs. anthropogenic elements  

 Distinct ROS activity and profile in summer vs. winter 

 The water-soluble fraction of four elements (V, Pd, Cu and Rh) 
displayed the highest associations with ROS activity (R2>0.60).  



Limitations 

 Generalizability 
 

 Toxicological assessment 
 

 Penetration in Indoor Environments 



Coarse PM have very low I/O ratios and low (often negative)  I/O correlations (R)  
SG: San Gabriel  R; Pearson Coefficient S; regression slope  
Riverside 

Indoor vs Outdoor CPM  Ratios and Correlation (Polidori et al, 2009) 
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Coarse PM Elements and Metals in Freeways, Busy Streets and 
Urban Background in LA (Kam et al 2012) 

710 110 Wilshir
e/Sunse
t 
 

USC 

Crustal elements 
Very similar 
concentrations 

Road dust, vehicular abrasion, tire and 
break wear – USC  on average 20%-40% 
of other areas- highest levels at Wilshire 
and Sunset Blvds.  



710/USC 

Wilshire/USC 

110/USC 

Ratios of Coarse PM in Various LA Freeways and busy streets vs 
USC (urban background site)- from Kam et al Atmos Environ 2012 
 
2-5 fold higher levels of CPM-bound metals from road dust in busy 
streets compared to urban background 



Recommendations on Future Aerosol 
Research 
 Bioaerosols 

 Quantification of fungi, bacteria, plant pollen, and 
spore materials  
 

 Road dust 
 Focused-characterization 
 In-vivo exposures 
Increasingly important, given  
difficulties controlling non-tailpipe 
exhaust  
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